网上有关“勾股定理定义是什么”话题很是火热,小编也是针对勾股定理定义是什么寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
定理:
如果直角三角形两直角边分别为a,b,斜边为c,那么 a^2+b^2=c^2; 即直角三角形两直角边的平方和等于斜边的平方。古埃及人利用打结作RT三角形。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,另一条直角边是4,斜边就是3×3+4×4=X×X,X=5。那么这个三角形是直角三角形。
勾股定理的来源:
毕达哥拉斯树毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[1]。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
常用勾股数3 4 5;6 8 10;5 12 13;8 15 17
勾股数一定要是正整数。小数或者带根号的不行,原因是勾股数的定义:
勾股数又名毕氏三元数?。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a?+b?=c?)。
又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。
扩展资料:
常见的勾股数及几种通式有:
(1) (3, 4, 5), (6, 8,10) … …。
3n,4n,5n (n是正整数)。
(2) (5,12,13) ,( 7,24,25), ( 9,40,41) … …。
2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数)。
(3) (8,15,17), (12,35,37) … …。
2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数)。
(4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n)。
百度百科-勾股数
关于“勾股定理定义是什么”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是周丽号的签约作者“孤光自照”
本文概览:网上有关“勾股定理定义是什么”话题很是火热,小编也是针对勾股定理定义是什么寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。定理:...
文章不错《勾股定理定义是什么》内容很有帮助